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Abstract 

Two general results for stationary axially symmetric interior solutions of the Einstein or 
Einstein-Maxwell equations in cylindrical coordinates are derived. 

Firstly, a coordinate condition for interior solutions is proposed, corresponding to the 
Weyl coordinate condition used in the exterior. 

Secondly, it is shown that elementary flatness in the interior is always ensured by 
realistic boundary conditions and matter tensors, given elementary flatness in the 
exterior metric. 

A physical discussion of the results is given, particularly in reference to solutions which 
have singular struts in them. 

1. Geometrical Preliminaries 

I t  is assumed for  simplicity tha t  space-time is occupied by  a single, 
compact ,  isolated body,  sur rounded by vacuum or electromagnetic  fields, 
and tha t  the entire system is s ta t ionary and axially-symmetric.  

Thus,  space-time is divided into two regions, I and E, the regions interior 
and exterior to the body,  respectively. Each region has a pa tch  of  coordinates  
x t' = (z, r, q~, t) with 0 < ~ < 27r,-oo < t < co,/z = 1,2, 3, 4. Then,  all functions 
are independent  o f  q~ and t, and in each hypersurface t = cst, there is 
rota t ional  symmetry  abou t  the axis r = 0. I and  E are separated by a t ime- 
like 3-surface B, the history of  the boundary  of  the body.  

B is defined parametr ical ly  in I and E separately, using parameters  
X a = (0, q~, t), A = 0, 3, 4, which act as coordinates  on B: 

B ___n {xt, = f ~ ( X a ) :  z = z(0), r = r(0), ~ = ~, t = t} 
I I I I 

and similarly in E. 0 takes the values 0 < 0 < ~r, and z,r,  z, r, are C 2 functions 
I I E E  
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of  0. In order that B be a closed two surface in each hypersurface t = cst, 
r(O) -+ 0 as 0 -+ 0, rr is necessary. Thus 

r(0) = sin Op(O), p(O) e C 2 

p(O) > 0 is necessary, for all 0. For  0 < 0 < rr, it is necessary to ensure that 
the body has finite thickness, whilst at the poles 0 = 0, rr it is necessary in 
order that the tangent in the z, r plane be defined there (see below). 

Then , / i s  the set of  points x ,  such that the pairs (z, r) lie within and on the 
closed curve formed by the arc z = z(0), r = r(0), and the axis zmin < z < 

I I I 

zmax, r = 0, in the Euclidean half-plane - m  < z < 0% r ~> 0, whilst E is the 
x 
set of  points x" such that the pairs (z, r) lie on and outside the arc z = z(0), 

E 

r = r(0), in the same half-plane. 
E 

The un-normalised tangents ~'a" to B, A acting as a counting index, are 
defined by 

a ~f"(X A) 
~'A ~'= aXA 

in I and E separately. Thus 

~'o'=(z o, r.o,O,O) 

~'~" = 83", r4" = 84" 

in I and E separately. (The comma is used to denote total or partial 
differentiation as appropriate.) In order that B be smooth at the poles 

ro 1 ~ 0  as O->O,~r 

Then, as r ~ 0 on B in I and E separately, 

~'o2(0) r(0) p(0) 

 o2(0) r(0) p(0) 
E E E 

as 0 --> 0 and similarly as 0 --> ~r. 
In I a n d  E separately, it is assumed that Einstein's equation 

may be solved for a metric in the form 

ds2=gll(dzZ+&2)+g33d~2+2g34d~dt+g44dt2 (1.1) 

where g~(z, r) ~ C 3 and T~(z, r) ~ C 1 in the appropriate region. It is also 
assumed that the boundary conditions (Darmois, 1927) 

[ha~]B = 0 (1.2) 

may be satisfied by g~,. Here, haB is the induced first fundamental form on B: 

hA,( X c) =~= g~,v(x" =f~(XC)) ~'a ~'/B ~ 
I I I I 



ON AXIALLY SYMMETRIC INTERIOR SOLUTIONS IN G.R. 55 

and similarly from E. Also, for F(x u) and F(x ~) arbitrary, [F]R is the 
E I 

discontinuity of  F across B: 

[F].  a F(x u = f . )  - F(x u = fu)  
E E I I 

In E, it is assumed that elementary flatness is satisfied (Synge, 1960, 
p. 313): 

a 1 'I"33 
E E~33 =~-~g33:----->" 1 as r--/'-0 
g l l  
E 

and that Weyl's coordinate condition is satisfied (Synge, 1960, p. 310; 
Lewis, 1932): 

ZI ~ --g33 g44 "J- g234 = r2 
E E E E 

Finally, it is assumed that g34, in both I and E, is such that 

a l  
Y34 = ~ g 3 4  

is C 3 in the appropriate region. 

2. The Interior Coordinate Condition 

One of the field equations may be written as 

Gx I + G2 2 = --K(TI 1 + T2 2) 
where 

_ _ / l l / 2 g l l ( G l l  + G22) a D2(AI /2 )  

and 

Since 

(2.1) imply that 

Thus 

D2 a a 2 02 
=gz~+gr ~ 

AI/2 r V ( _ Y 3 3  2 2 = g44 -l- r Y34) 

2[ '~/(--Y33944)],r  ~ 0 a s  r ~ 0 

(2.1a) 

(2.1b) 

'Y33 g44 ---> F(z) 

where F is arbitrary*, as r ~ 0, in both I and E. To choose a form for F, 
x 

consider E, where Weyl's condition gives F = - 1 .  One is free to choose 
E 

F = - I .  
I 

* The reason that F(z) in Section 2 is arbitrary is that (2.1) is the only field equation for 
g33, in the sense that all the other field equations may be solved (in principle) for the 
other elements of g,v with ga 3 undetermined except for (2.1). 
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Thus the proposed coordinate system for use in I is: a metric of the form 
(1.1) and x" =(z,r,g?,t)as explained in Section 1, with the coordinate 
condition 

)'33 g44 --->" --1 a s  r -+ 0 (2.2a) 
I I 

Elementary flatness in ! allows the alternative form 

gli g44 -->" - I  a s  r --> 0 (2.2b) 
I I 

3. Elementary Flatness in I 

One of the field equations may be written as 

G12 = - t C T l  2 (3.1a) 
where 

4A2 g211 G12 s 2Agll A,~, - A(gll,rA,~ + gll,~A.r) - gll A,~A,r 

-1" Agll(g33,zg44,r + g33,r g44,z - -  2g34,zg34,r) (3.1b) 

Write A as 
A r 2 ( _ _ ~ 3 3 9 4 4 +  2 2 = r ) ' 3 4 )  

Evaluating all the terms in the field equation (3.1b), one finds that the 
LHS ~ O ( r 4 ) ,  whilst some terms in the RHS ~ O(r3). Thus, as r ~ 0, these 
terms tend to zero, and the resulting equation is 

gll)'33,z--gll,z)'33--->O a s  r - + O  

Thus 

gll_+est  as r - + 0  (3.2) 
)'33 

Now, (1.2) yields, as two of the metric boundary conditions, 

[g33]B -~ [ r 2 ) ' 3 3 ] s  ~--- 0 
(3.3) 

[gl l{( ' r0I)  2 -{" (q'02)2}]B = 0 

Applying the results of Section 1 to the conditions (3.3) yields 

\ O--~] (~33)~ (3.4) 

as r -~ 0 on B, 0 -+ 0, where (f)~r means F(x" = f " ( X 0 )  and similarly for / ,  
E E 

and similarly as r ~ 0 on B, 0 --~ ~r. 
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Now elementary flatness in E ensures that 

~33 

-~-1 a s r - + 0  
g l l  
E 

throughout E, so that (3.4) ensures that 

Yt33 -+1 a s r ~ 0 o n B  
g'~/p 

and (3.2) ensures that 
~'33 

-~- 1 as r -+ 0 throughout I 
g l l  
i 

Thus elementary flatness in E, satisfaction of the boundary conditions 
(3.3), and the field equation (3.1) in I, ensure elementary flatness in L 
(This is independent of the choice of  F in Section 2.) 

I 

4. Discussion o f  the Results 

The coordinate condition of Section 2 is derived from the same field 
equation as is Weyl's condition for E, and so (2.2) may be regarded as 
generalising Weyl's condition to the case that (G~ ~ § G22) does not vanish. 
It may therefore be used in finding interior solutions for the numerous 
axially symmetric exterior solutions which are known, and possibly also 
for developing cosmological-type solutions for matter fields which fill the 
whole of  space-time. 

In matching interior and exterior solutions, the boundary conditions 
(1.2) would be supplemented by (Darmois, 1927; Israel, 1966): 

[kan], = 0 (4.1) 

where kAB is the induced second fundamental form of B: 

kaB a_ --nt,;v ra ~ rv v 
I I I I 

where n~ is the unit normal to B and similarly from E. With metrics of the 
1 I 

form (1.1) in both E and/ ,  which satisfy (1.2) and (4.1) across B, a sufficient 
condition for admissible coordinates (g~v ~ C' across B) is that [~-A ~] = 0. 
In the light of zum Haagen (1969), one can conjecture the existence of 
solutions in the form (1.1) i n / ,  for ranges of  coordinates as described in 
Section 1, because the boundary conditions (1.2) and (4.1)are much less 
restrictive than those of zum Haagen, namely that g~v ~ C z across B. 

The results of Section 3 are more interesting, physically, as the condition 
of elementary flatness on r = 0 corresponds to the absence of struts along 
the z-axis. See, for example, Synge (1960, p. 313), Bonnor (1969), Sackfield 
(1971) and Bonnor & Swaminarayan (1964). 
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The result of Section 3 means that a strut of tension or compression cannot 
exist inside an isolated body without a strut of some type outside the body, 
extending to infinity, given that the boundary conditions (1.2) are satisfied. 
A strut inside a body shows itself as singularities in the stresses as well as in 
the metric on r = 0 in L 

However, if (1.2) are relaxed, then a strut could be allowed inside the 
body, by having equal and opposite discontinuities in hub at the poles, and 
no struts outside would be needed. If the discontinuities at the poles were to 
be of different magnitudes, then struts outside would be necessary, though 
one could be dispensed with by suitable choice of the discontinuity at that 
pole. 

In the case of  two or more bodies with struts between them, or for 
accelerated bodies, where the struts appear to exert forces on the bodies, 
there appear to be two ways of  accommodating the forces. Either, (1.2) can 
be relaxed, at (and perhaps near) appropriate poles, or (1.2) can be main- 
tained whilst allowing a singular stress system along r = 0 in the I of  
appropriate bodies. 

The meaning of a rotating spike--a singularity on r = 0 of  angular 
momentum rather than stress (Bonnor, 1969; Sackfield, 1971)--could be 
that [h34] # 0 at a pole. 

The meaning of [hAB] # 0 is hinted at in Bonnor & Sackfield (1968, 
Section 4). There it is shown that [h,4 ] = [g44] # 0 corresponds to a dipole 
layer of mass, so that [hAs] # 0 seems to correspond to the existence of 
double layers of mass and stress, and the relaxing of (1.2) at and near a 
pole would correspond to allowing such layers to spread the load of  the 
strut into the interior of  the body. This boundary condition has not been 
much discussed. 

It is interesting that the boundary condition (4.1) does not enter into the 
discussion. I f  (4.1) is relaxed, then as shown in Israel (1966), single layers of 
mass and stress appear on B, but these seem to play no part in the action of  
struts on bodies. However, as the field equations have not been solved for 
such systems, one cannot be certain that [ha~] # 0, [kAB] = 0, are compatible 
boundary conditions. 

For realistic solutions, the struts would be replaced by thick columns, and 
all such connected bodies would form a single non-singular I of the type 
discussed in Sections 1 to 3. 
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